
Java: Object-oriented programming
for the cyber age

SIAMAK HASSANZADEH CHARLES C. MOSHER
Sun Microsystems ARCO Exploration and Production Technology

Mountain View, California Plano, Texas

A phenomenal rise in interest in the
Java programming environment and
World Wide Web browsers with Java
capability have added a new dimension
to the ever-increasing popularity of the
Internet and the Web (TLE, March and
July 1995).

The Java programming language
originated at Sun Microsystems as part
of a larger project to develop advanced
software for consumer electronics.
These devices are small, reliable,
portable, distributed, real-time embed-
ded systems. Initially the intention was
to use C++. But after encountering a
number of problems, a new language,
originally called Oak, was born. After
several years of experience with the lan-
guage, it was renamed to Java and was
retargeted to the Internet. In a nutshell,
Java is a simplified, safe, and portable
version of C++. Examples of Java
aware browsers are Netscape (2.0 and
above) and the HotJava Browser
from Sun Microsystems. The HotJava
browser is actually an application writ-
ten in the Java language. Web browsers
with Java capabilities help make the In-
ternet come alive. Java-based browsers
build on the Internet and network
browsing techniques established by
Mosaic (TLE, March 1995) and ex-
pands them by adding dynamic behav-
ior that transforms static documents
into dynamic applications.

One of the most useful features of
Java is its ability to dynamically add to
its capabilities. This feature is called in-
teractive content. Using Java, you can
add applications that allow the user to
interact dynamically with the Web
page. Examples in geophysics range
from interactive seismic data interpre-
tation to 3-D seismic movies (dynamic
visualization of 3-D seismic data); the
possibilities are endless.

Design goals. The Java programming
language and environment are designed
to solve a number of problems in mod-
ern programming practice. Java is a
“simple, object-oriented, distributed,
interpreted, robust, secure, architecture

neutral, portable, high-performance,
multithreaded, and dynamic” language.
(The Java language: http://java.sun.com.)

From the onset of its design, Java
was meant to be simple and familiar. It
has the “look and feel” of C and C++,
and as such it can be programmed eas-
ily and without much training. The ob-
jective from the beginning was that the
learning curve should not be too steep.

Java is object-oriented, providing fa-
cilities to define and manipulate ob-
jects. Objects are self-contained entities
which have a state (a collection of data
associated with an object) and to which
messages can be sent (see Appendix A
for a brief introduction to objects). A
message is a mechanism by which the
state of an object can be accessed or al-
tered. The object-oriented facilities of
Java are essentially those of C++, with
extensions from Objective C.

Designed for Intranet and Internet
computing, Java has an extensive li-
brary of routines for dealing with
TCP/IP protocols like HTTP and FTP
(TLE, March and July 1995). Network
computing is integrated into the lan-
guage and runtime system and is hence
(almost) transparent. Moreover, a great
deal of emphasis has been placed on se-
curity. Java provides a programming
environment for developing virus-free
and tamper-free applications. Applica-
tions written in Java are secure from in-
trusions by unauthorized codes. It
should be noted, however, that not all
security issues of the Java language
have been resolved. These issues are
being addressed as the language
evolves.

Java is robust due to the elimination
of features of programming languages
such as C which lead to applications
crashing at crucial moments. The single
biggest difference between Java and
C/C++ is that Java has a pointer model
that eliminates the possibility of over-
writing the memory and corrupting
data. Instead of pointer arithmetic, Java
has true arrays as in Fortran. In addi-
tion, it’s not possible to turn an arbitrary
integer into a pointer by casting. Java

puts a lot of emphasis on early checking
for possible problems, later dynamic
(runtime) checking, and eliminating sit-
uations that are error prone.

Support applications of Java run on
heterogeneous networked computer
systems. To enable a Java application to
execute anywhere on the network, the
compiler generates bytecodes - an ar-
chitecture neutral object file format de-
signed to transport codes to multiple
hardware and software platforms. In
one sense, bytecodes are portable hard-
ware-level machine instructions. The
Java interpreter can execute bytecodes
directly on any system to which the in-
terpreter has been ported. With this neu-
trality, most applications software
written in the Java language can be run
on any system. The architecture-neutral
and portability of Java is often referred
to conceptually as the Java Platform, a
“Write Once, Run Anywhere” capabil-
ity for delivering and running applica-
tions on heterogeneous computing
environments.

High performance is achieved by
translating bytecodes on the fly (at run-
time) into native machine codes. For ap-
plications requiring large amounts of
compute power, the compute-intensive
segments can be rewritten in native ma-
chine codes and interfaced with the Java
environment. Java also supports multi-
threading; the capability to execute
multiple concurrent sequences of in-
structions. Multithreading allows devel-
opment of high performance parallel
computing applications. The inclusion
of parallel computing concepts as part
of the language makes Java an attractive
platform for not only for interactive
applications, but also for scientific com-
puting applications (i.e., seismic pro-
cessing) requiring large amounts of
computing horsepower.

A more dynamic language than C or
C++, Java can adapt to an evolving en-
vironment. Many functionalities needed
during the execution of an application
can be linked dynamically as needed. In
summary, the Java language makes ob-
ject-oriented programming easier and

DECEMBER 1996 THE LEADING EDGE 1379

*The HelloWorldApp class implements an application that
*simply displays” Hello World!’ to the standard output.
*/

class HelloWorldApp {
public static void main(String[] args) {

System.out.println("Hello World!“); //Display the string.

I
Figure 1. The ‘Hello World!’ program written in Java.

int sum (int arr[]) {
int result = 0;
for (int i = arr.length ; --i>=rl ;) {

results += arr{i};
}
return results;

}

Figure 2. The ‘Sum’ program written
in Java.

//Iterative
long faci (int n) (

long result = 1 L;
for (int i = 2; i n ; i++) {

results*= n:
}
return results;

}
// Recursive

long facr (int n) {
i f (n<= l) {
return 1 L;
}
retturn facr (n - 1) * n;

}

Figure 3. The ‘Factorial’ program
written in Java.

provides a new powerful tool for the de-
velopment of interactive, distributed,
and parallel computing applications.

Language specification. Although re-
lated to C and C++, Java is organized
differently, with some of their features
omitted and a few from other languages
included. Java is intended to be a pro-
duction language, not a research lan-
guage, and so the design of Java has
avoided including new and untested
features.

Java is strongly typed language,
which means that every variable and
every expression has a type that is
known at compile time. Types limit the
values that a variable can hold or that an
expression can produce. Types also
limit the operations supported on those
values, and determine the meaning of
the operations. This specification

clearly distinguishes between errors
that can and must be detected at com-
pile time, and those that occur at run
time. Compile time normally consists
of translating Java programs into a ma-
chine-independent byte-code represen-
tation. Run-time activities include
loading and linking of the classes
needed to execute a program, optional
machine code generation and dynamic
optimization of the program, and actual
program execution.

As in C or C++, Java is a relatively
high-level language. To illustrate the
simple and familiar features of Java,
Figure I displays the traditional ‘Hello
World!’ program written in Java. This
example declares a class thus named.
Within this class, a single method called
‘main’ is declared which in turn con-
tains a single method invocation to dis-
play the string ‘Hello World!’ on the
standard output (e.g., on the monitor).
The statement that prints ‘Hello World!’
does so by invoking the ‘println’
method of the ‘out’ object. The out ob-
ject is a class variable in the ‘system’
class that performs output operations on
tiles. Figures 2 and 3 show examples of
a summing operation and factorial writ-
ten in Java language. More detailed in-
formation and examples can be
obtained from http:// java.sun.com.

JavaSeis. Seismic data processing is
ideally suited for parallel distributed
computing (TLE, this issue). However,
thus far there has not been a simple pro-
gramming environment to provide a
portable, distributed and parallel frame-
work for scientific computation in gen-
eral, and seismic data processing in
particular. Previous attempts at devel-
oping such a framework have been
based on C++ (POOMA: the parallel
object-oriented methods and applica-
tions, http://www.acl.lanl.gov/pooma-
framework).

As the basis for the JavaSeis efforts,
we plan to use the ARCO seismic
benchmark suite (SBS), which has re-

00 programming 101

Object-oriented programming (in
contrast to procedural techniques) is
a different way of organizing soft-
ware. Objects are software program-
ning entities that may represent real
world items such as cars, planes,
trees, oil fields, etc. Software appli-
cations may also contain objects
such as spreadsheets, menus, and so
on. Thus any system can be regarded
as a collection of objects.

In technical terms, object-ori-
ented technology consists of a set of
nodules called classes, a set of in-
heritance relations, and mapping
‘unctions that associate pairs of
classes. Each object is represented
by a unique identifier and has some
data associated with it. The collec-
ion of data associated with an ob-
ect is called its state. The state of an
object is defined by its instance vari-
ables. The functions an object per-
forms are known as its behavior An
object’s behavior is defined by meth-
ods. Methods manipulate the in-
stance variables to create a new
state. A class is a software construct
hat defines the instance variables
and methods of an object. A class in
and of itself is not an object. A class
defines how an object will look and
behave when an object is created or
nstantiated from the specification

declared by the class. Inheritance is
a defined relationship between two
c l a s s e s

If an object wants another object
to perform some work on its behalf
it sends a message to the second ob.
ject. Using the message-passing par.
adigms of object-oriented pro.
gramming, one can build entire net.
works of objects that pass message!
among themselves to change their
states. This programming technique
is ideal for creating a distributed and
parallel framework for scientific
computing. Appendix B contains a
list of references on object-orientec
programming.

cently been incorporated into the
SPEChpc96 benchmark suite as SPEC-
seis96. SBS manages seismic data as
parallel distributed objects using tradi-
tional procedural languages (C and For-
tran). The environment is designed to be
flexible and extendable, and is used ex-
tensively at ARCO as a prototyping en-

vironment. New processes are devel-
oped using “inheritance by copying
templates.” As a result, system changes
that often require extensive modifica-
tions to all copies of a few basic system
templates are now amended by adjust-
ing only base templates. Parallelism is
managed through an API defined by the
services required for implementing
common geophysical data processing
algorithms .

The existing object-based structure
of SBS and the well-defined parallel be-
havior of many geophysical algorithms
makes this application suite a natural fit
with the constructs defined in the Java
language. Currently, maintenance and
portability of SBS are made more diffi-
cult by lack of a coherent object model
and a consistent parallel programming
model. Implementation of SBS in Java
would significantly improve the porta-
bility and maintainability of seismic
computing applications, and would also
provide a pathway to use of network
based parallel computing for produc-
tion seismic processing.

Concluding remarks. The Java lan-
guage, very simple and object-oriented,
provides an extremely attractive plat-
form for development of portable, dis-
tributed and parallel applications for
scientific computing in general and
seismic data processing in particular.
Java’s architecture-neutral aspects
make it an ideal development program-
ming paradigm to meet the challenges
of distributing dynamically extensible
software across networks of computers.

Suggestions for further reading. An
introduction to Object-Oriented Pro-
gramming, by T. Budd., Addison Wes-
ley Publ i sh ing Co. inc ludes a
comparison of the C++, Objective C,
SmallTalk, and Object Pascal. The De-
sign and Evolution of C++, by B.
Stroustrop, Addison Wesley , is a de-
tailed history of how we came to where
we are with C++. Java Language Tuto-
rial: Object-Oriented Programming for
the Internet, Sun Microsystems, Inc.
http://www.javasoft.com/ is an on-line
guide to writing programs in the Java
language. The Java Language Specifi-
cation, by Gosling, Joy, and Steele, Sun
Microsystems, http://www.javasoft.
com/. Another introduction to the object
oriented techniques is Active Java, Ob-
ject-oriented Programming for the
World Wide Web, by Freeman and Ince,
Addison-Wesley. E

DECEMBER 1996 THE LEADING EDGE 1381

